Identification of deoxyribonuclease II as an endonuclease involved in apoptosis.

نویسندگان

  • M A Barry
  • A Eastman
چکیده

Cell death occurs by apoptosis during programmed deletion of cells and following exposure to cytotoxic agents. Central to the mechanism of apoptosis is internucleosomal DNA digestion by an endogenous endonuclease which is thought to mediate cell death. An axiom of apoptosis is that the endonuclease involved is a Ca2+/Mg(2+)-dependent endonuclease. During purification of endonucleases from Chinese hamster ovary cells, we found little Ca2+/Mg(2+)-dependent endonuclease activity, but large amounts of an endonuclease active below pH 7. This acidic endonuclease was activated in intact cells by reducing intracellular pH values below 7 with a proton ionophore. This activity generated internucleosomal digestion of DNA characteristic of apoptosis. Nuclear extracts contained a cation-independent endonuclease with identical pH-dependent activity. We have compared the acidic endonuclease to bovine deoxyribonuclease II (DNase II) and have found them nearly identical by all tests, including sensitivity to various inhibitors, purification by the same chromatographic steps, and recognition by antibody raised against the bovine enzyme. Addition of either the acidic endonuclease or bovine DNase II to isolated nuclei induced internucleosomal DNA digestion up through pH 6.5. These data demonstrate that DNase II can mediate internucleosomal DNA digestion characteristic of apoptosis following intracellular acidification. Furthermore, these data question the premise that the Ca2+/Mg(2+)-dependent endonuclease is the only endonuclease involved in apoptosis.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The acid deoxyribonuclease of neutrophils: a possible participant in apoptosis-associated genome destruction.

Human neutrophils are terminally differentiated cells that spontaneously undergo apoptosis in tissue culture. Apoptosis in these cells can be delayed by culture in the presence of granulocyte colony-stimulating factor or other inflammatory mediators. Neutrophils were found to contain an acid endonuclease that appeared to be responsible for the internucleosomal DNA cleavage that accompanies apop...

متن کامل

Associated with Intracellular Acidification Etoposide-induced Apoptosis in Human HL-60 Cells Is

Apoptosis is a pathway of cell death characterized by internucleosomal digestion of genomic DNA. Such DNA digestion can be induced by both physiological stimuli and cytotoxic treatment with many anticancer agents. This digestion has generally been considered to be mediated by a Ca2VMg2*-dependent endonuclease that is activated by increases in intracellular ( 'a; '. However, we suggest that an a...

متن کامل

L-DNase II, a molecule that links proteases and endonucleases in apoptosis, derives from the ubiquitous serpin leukocyte elastase inhibitor.

The most widely recognized biochemical change associated with the majority of apoptotic systems is the degradation of genomic DNA. Among the enzymes that may participate in this cleavage, the acidic cation-independent DNase II is a likely candidate since it is activated in many apoptotic cells. To better understand its role, we purified and sequenced a DNase II extracted from porcine spleen. Pr...

متن کامل

The DFF40/CAD endonuclease and its role in apoptosis.

The sequential generation of large-scale DNA fragments followed by internucleosomal chromatin fragmentation is a biochemical hallmark of apoptosis. One of the nucleases primarily responsible for genomic DNA fragmentation during apoptosis is called DNA Fragmentation Factor 40 (DFF40) or Caspase-activated DNase (CAD). DFF40/CAD is a magnesium-dependent endonuclease specific for double stranded DN...

متن کامل

LEI/L-DNase II: interplay between caspase-dependent and independent pathways.

Caspase activation has been seen, for several years, as the biochemical marker of apoptosis. However, in 2005 the Nomenclature Committee on Cell Death (NCCD) established that the 'official' classification of cell death had to rely on morphological criteria owing to the absence of a clear-cut equivalence between structural alterations and biochemical pathways. Actually, the controlled destructio...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Archives of biochemistry and biophysics

دوره 300 1  شماره 

صفحات  -

تاریخ انتشار 1993